Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
BMC Gastroenterol ; 24(1): 143, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654193

RESUMO

BACKGROUND: Food malabsorption and intolerance is implicated in gastrointestinal symptoms among patients with irritable bowel syndrome (IBS). Key triggers include fructose and fructan. Prior studies examined fructose and fructan malabsorption separately in IBS patients. None have concurrently assessed both within the same patient group. We aimed to investigate the association between fructose and fructan malabsorption in the same patients with IBS using hydrogen breath testing (HBT). METHODS: We retrospectively identified patients with IBS who underwent fructose and fructan HBTs and abstracted their results from the electronic medical record. Fructose and fructan HBTs were performed by administering a 25 g fructose solution or 10 g fructan solution, followed by breath hydrogen readings every 30 min for 3 h. Patients were positive for fructose or fructan malabsorption if breath hydrogen levels exceeded 20 ppm. RESULTS: Of 186 IBS patients, 71 (38.2%) were positive for fructose malabsorption and 91 (48.9%) were positive for fructan malabsorption. Of these patients, 42 (22.6%) were positive for fructose malabsorption and fructan malabsorption. Positive fructose HBT readings were significantly associated with positive fructan HBT readings (p = 0.0283). Patients positive for fructose malabsorption or fructan malabsorption had 1.951 times higher odds of testing positive for the other carbohydrate. CONCLUSIONS: Our results reveal a clinically significant association between fructose malabsorption and fructan malabsorption in patients with IBS. Fructan malabsorption should be assessed in patients with fructose malabsorption, and vice versa. Further studies are required to identify the mechanisms underlying our findings.


Assuntos
Testes Respiratórios , Frutanos , Frutose , Síndrome do Intestino Irritável , Síndromes de Malabsorção , Humanos , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/complicações , Frutose/metabolismo , Feminino , Masculino , Estudos Retrospectivos , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/complicações , Frutanos/metabolismo , Adulto , Pessoa de Meia-Idade , Hidrogênio/análise , Hidrogênio/metabolismo
2.
J Agric Food Chem ; 72(14): 7818-7831, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466922

RESUMO

This study aimed to compare the structural features and functional properties of polysaccharides from single-clove garlic (SGPs) and multiclove garlic (MGPs) and to establish their structure-function relationships. Both SGPs and MGPs were identified as fructans consisting mainly of →1)-ß-d-Fruf (2→ and →6)-ß-d-Fruf (2→ residues but differed in average molecular weights (6.76 and 5.40 kDa, respectively). They shared similar thermodynamic properties, X-ray diffraction patterns, and high gastrointestinal digestive stability. These two purified fructans could dose-dependently scavenge free radicals, reduce oxidized metals, and effectively alleviate metronidazole-induced oxidative stress and CuSO4-induced inflammation in zebrafish via inhibiting the overexpression of inflammation-related proteins and cytokines. SGPs showed lower free radical scavenging activity in vitro than MGPs but higher antioxidant and anti-inflammatory activities in vivo. Taken together, the molecular weight was the main structural difference between the two garlic fructans of different varieties, which is a potential reason for their differences in biological activities.


Assuntos
Alho , Syzygium , Animais , Frutanos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Alho/química , Peixe-Zebra/metabolismo , Inflamação
3.
PeerJ ; 12: e17052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464751

RESUMO

Tuber plants are of great significance in the world as human food crops. Polysaccharides, important metabolites in tuber plants, also serve as a source of innovative drugs with significant pharmacological effects. These drugs are particularly known for their immunomodulation and antitumor properties. To fully exploit the potential value of tuber plant polysaccharides and establish a synthetic system for their targeted synthesis, it is crucial to dissect their metabolic processes and genetic regulatory mechanisms. In this article, we provide a comprehensive summary of the basic pathways involved in the synthesis of various types of tuber plant polysaccharides. We also outline the key research progress that has been made in this area in recent years. We classify the main types and functions of tuber plant polysaccharides and analyze the biosynthetic processes and genetic regulation mechanisms of key enzymes involved in the metabolic pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber plants and understanding the underlying mechanism of action of key enzymes in the metabolic pathway, we can provide a theoretical framework for enhancing the yield of polysaccharides and other metabolites in plant culture cells. This will ultimately lead to increased production efficiency.


Assuntos
Plantas , Polissacarídeos , Humanos , Metabolismo dos Carboidratos , Frutanos/metabolismo , Plantas/metabolismo , Amido
4.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553192

RESUMO

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inulina/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Interleucina-18 , Codonopsis/metabolismo , Proteínas NLR/metabolismo , Frutanos/metabolismo , Frutanos/farmacologia , Frutanos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Autofagia , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , Colo/patologia
5.
Bioresour Technol ; 395: 130395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301939

RESUMO

Currently, levan is attracting attention due to its promising applications in the food and biomedical fields. Levansucrase synthesizes levan by polymerizing the fructosyl unit in sucrose. However, a large amount of the byproduct glucose is produced during this process. In this paper, an engineered oleaginous yeast (Yarrowia lipolytica) strain was constructed using a surface display plasmid containing the LevS gene of Gluconobacter sp. MP2116. The levansucrase activity of the engineered yeast strain reached 327.8 U/g of cell dry weight. The maximal levan concentration (58.9 g/l) was achieved within 156 h in the 5-liter fermentation. Over 81.2 % of the sucrose was enzymolyzed by the levansucrase, and the byproduct glucose was converted to 21.8 g/l biomass with an intracellular oil content of 25.5 % (w/w). The obtained oil was comprised of 91.3 % long-chain fatty acids (C16-C18). This study provides new insight for levan production and comprehensive utilization of the byproduct in levan biosynthesis.


Assuntos
Hexosiltransferases , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Glucose , Frutanos/metabolismo , Sacarose/metabolismo
6.
Sci Rep ; 14(1): 3173, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326332

RESUMO

This research represents a novel study to assess how coculture affects levan yield, structure, bioactivities, and molecular weight. Among the 16 honey isolates, four bacterial strains recorded the highest levan yield. The Plackett-Burman design showed that the coculture (M) of isolates G2 and K2 had the maximum levan yield (52 g/L) and the effective factors were sucrose, incubation time, and sugarcane bagasse. The CCD showed that the most proper concentrations for maximum levan yield (81 g/L): were 130 g/L of sucrose and 6 g/f of sugarcane bagasse. Levan's backbone was characterized, and the molecular weight was determined. G2 and K2 isolates were identified based on 16 sRNA as Bacillus megaterium strain YM1C10 and Rhizobium sp. G6-1. M levan had promising antioxidant activity (99.66%), slowed the migration activity to a great extent, and recorded 70.70% inhibition against the hepatoblastoma cell line (HepG2) at 1000 µg/mL. Gene expression analysis in liver cancer cell lines (HePG2) revealed that M levan decreased the expression of CCL20), 2GRB2, and CCR6) genes and was superior to Doxo. While increasing the expression of the IL4R and IL-10 genes. The DNA damage values were significantly increased (P < 0.01) in treated liver cancer cell lines with levan M and Doxo. The results referred to the importance of each of the hydroxyl and carboxyl groups and the molecular weight in levans bioactivities.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Saccharum , Celulose , Carcinoma Hepatocelular/genética , Técnicas de Cocultura , Neoplasias Hepáticas/genética , Saccharum/metabolismo , Frutanos/metabolismo , Bactérias/metabolismo , Sacarose/metabolismo , Linhagem Celular
7.
Proteins ; 92(2): 170-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37753539

RESUMO

Due to its bioactivity and versatile applications, levan has appeared as a promising biomaterial. Levansucrase is responsible for the conversion of sucrose into levan. With the goal of enhancing levan production, the strategy for enhancing the stability of levansucrase is being intensively studied. To make proteins more stable under high temperatures, proline, the most rigid residue, can be introduced into previously flexible regions. Herein, G249, D250, N251, and H252 on the flexible coil close to the calcium binding site of Bacillus licheniformis levansucrase were replaced with proline. Mutations at G249P greatly enhance both the enzyme's thermodynamic and kinetic stability, while those at H252P improve solely the enzyme's kinetic stability. GPC analysis revealed that G249P synthesize more levan, but H252P generate primarily oligosaccharides. Molecular dynamics simulations (MD) and MM/GBSA analysis revealed that G249P mutation increased not only the stability of levansucrase, but also affinity toward fructan.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Sítios de Ligação , Frutanos/química , Frutanos/metabolismo , Sacarose/metabolismo
8.
Food Chem ; 430: 136923, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517944

RESUMO

A new electrode management, within the HPAEC-PAD systems, was proposed to measure inulin-type fructans in chicory roots, grown under two lighting periods: 12 h (T-12 h) and 24 h continuous lighting (T-24 h-CL), with the same daily light integral (DLI). The amperometric cell turn-off (PAD-Off) after elution of carbohydrate of interest, allowed the stabilization of the PAD response, avoiding excessive electrode surface oxidation. The enhanced signal stability allowed the application of fucose as internal standard (ISTD) for data normalization, improving the correctness of linear calibration curves and the quantification of fructans in the case study of chicory plants. T-24 h-CL decreased FW and DW of chicory leaves while increasing these parameters in roots. Fructans amount in chicory roots was significantly higher in the T-24-CL photoperiod. The accuracy of prebiotics quantification by PAD-Off emphasized significant differences between light treatments. CL can improve the yield and quality of chicory roots.


Assuntos
Chicória , Inulina , Inulina/metabolismo , Frutanos/metabolismo , Prebióticos , Raízes de Plantas/metabolismo
9.
Food Chem ; 440: 138250, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154282

RESUMO

Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and ß-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed ß-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and ß-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.


Assuntos
Hexosiltransferases , Transferases , Transferases/metabolismo , beta-Frutofuranosidase/metabolismo , Hexosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Frutanos/metabolismo , Catálise , Sacarose/metabolismo , Especificidade por Substrato
10.
Dokl Biol Sci ; 512(1): 343-353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38087025

RESUMO

The review considers the chemical structure specifics and distribution in plants for fructose-containing carbohydrates (fructans). Various biological activities were observed in fructans and associated with their physicochemical features. Fructans affect many physiological and biochemical processes in the human body, improving health and reducing the risk of various disorders. Prebiotic activity is the most important physiological function of fructans. Fructans improve the microflora composition in the colon and intestinal mucosa by increasing the content of useful bacteria and decreasing the content of potentially harmful microorganisms, stimulate the physiological functions of the microflora, and provide for a better state of the intestine and a better health status. By modifying the intestinal microbiota and utilizing certain additional mechanisms, fructans can favorably affect the immune function, decrease the risk of various inflammatory processes, and to reduce the likelihood of tumorigenesis due to exposure to carcinogens. Fructans improve carbohydrate and lipid metabolism by reducing the blood levels of glucose, total cholesterol, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) and increasing the blood content of high-density lipoprotein (HLD). Fructans are low in calories, and their use in foods reduces the risk of obesity. Fructans facilitate higher calcium absorption and increase the bone density, thus reducing the risk of osteoporosis. Fructants protect the body from oxidative stress, intestinal infections, and parasitic invasions.


Assuntos
Frutose , Inulina , Humanos , Inulina/fisiologia , Frutanos/farmacologia , Frutanos/química , Frutanos/metabolismo , Plantas/metabolismo
11.
Sci Rep ; 13(1): 19888, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964003

RESUMO

Fructans found in agave are called agavins, highly branched neo-fructans. They are essential on the yield and quality of Tequila production. The need for agave specimens with higher accumulation of agavins became essential before the growing demand of such products. To get such specimens, understanding agavins metabolism is a quintessential requirement. For this, a more efficient biological model is required. The recently reclassified Agave amica possesses the potential to gather the requirements for becoming such a model. Therefore, this study dealt with the characterization of carbohydrates in the bulbs of A. amica focusing on fructans. Moreover, it tested and described its feasibility as model for the accelerated study of agavins. Infrared analysis unveiled potential content of fructans in the bulbs of A. amica. Furthermore, high performance thin layer chromatography detected fructooligosaccharides. High performance anion exchange chromatography confirmed a polydisperse mixture of branched fructans. Gas chromatography-mass spectrometry analysis demonstrated agavins like structures in the bulbs of A. amica. Moreover, total fructan content and multivariate data analysis through bulb's age demonstrated their correlation. Thus, the presence of agavins, their correlation with phenology, and their technical advantages highlighted the feasibility of this species as a potential new biological model for the study of agavins' metabolism.


Assuntos
Agave , Agave/metabolismo , Carboidratos , Cromatografia em Camada Delgada , Frutanos/metabolismo
12.
PLoS One ; 18(10): e0293396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883423

RESUMO

The effect of 20% high degree polymerized agave fructans (HDPAF) on the induction of the defense system in avocado fruits was investigated by transcriptomic analysis at 1, 24 and 72 h after treatment, and the effect of HDPAF on respiration rate and ethylene production was also analyzed. Transcriptomic profiling revealed 5425 differentially expressed genes (DEGs), 55 of which were involved in the pathways related to plant defense response to pathogens. Key genes were associated with phenylpropanoid biosynthesis, mitogen-activated protein signaling, plant hormone signaling, calcium ion signal decoding, and pathogenesis-related proteins. Dysregulated genes involved in ethylene biosynthesis were also identified, and the reduction in ethylene production by HDPAF was corroborated by gas chromatography, where three days of delayed peak production was observed compared to that in water-treated fruits. These results help to understand the mechanism of induction of the avocado defense system by applying HDPAF and support the application of HDPAF as an efficient postharvest treatment to extend the shelf life of the fruit.


Assuntos
Agave , Persea , Transcriptoma , Frutas/genética , Frutas/metabolismo , Persea/genética , Agave/genética , Frutanos/farmacologia , Frutanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Physiol Plant ; 175(4): e13975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616010

RESUMO

The identification of several fructan exohydrolases (FEHs, EC 3.2.1.80) in non-fructan accumulating plants raised the question of their roles. FEHs may be defense-related proteins involved in the interactions with fructan-accumulating microorganisms. Since known defense-related proteins are upregulated by defense-related phytohormones, we tested the hypothesis that FEHs of non-fructan accumulating plants are upregulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) using the model plant Arabidopsis thaliana and the agronomically relevant and genetically related species Brassica napus. By sequence homologies with the two known FEH genes of A. thaliana, At6-FEH, and At6&1-FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were identified. Plants were treated at root level with SA, methyl jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-related and FEH genes were measured after treatments. MeJA and ACC did not upregulate FEHs, while HEL (HEVEIN-LIKE PREPROTEIN) expression was enhanced by both phytohormones. In both species, the expression of AOS, encoding a JA biosynthesis enzyme, was enhanced by MeJA and that of the defensine PDF1.2 and the ET signaling transcription factor ERF1/2 by ACC. In contrast, SA not only increased the expression of genes encoding antimicrobial proteins (PR1 and HEL) and the defense-related transcription factor WRKY70 but also that of FEH genes, in particular 6&1-FEH genes. This result supports the putative role of FEHs as defense-related proteins. Genotypic variability of SA-mediated FEH regulation (transcript level and activities) was observed among five varieties of B. napus, suggesting different susceptibilities toward fructan-accumulating pathogens.


Assuntos
Arabidopsis , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Frutanos/metabolismo , Ácido Salicílico/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/farmacologia , Oxilipinas/farmacologia
14.
PLoS One ; 18(6): e0286625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267258

RESUMO

Helianthus tuberosus L. (Jerusalem artichoke) produce inulin, a type of fructan, which possesses several biotechnology applications, e.g., sugar syrup, prebiotics, fiber in diabetic food, enabling blood sugar and cholesterol reduction. Drought reduces inulin accumulation in the tubers of Jerusalem artichoke as the plants protect themselves from this stress by induction of stress gene responses, effecting growth reduction. Endophytic bacteria are promising candidates to promote plant growth and yield particularly under abiotic stress. Therefore, three endophytic bacteria with plant growth promoting properties were examined for their ability to improve Jerusalem artichoke growth and yield under both well-watered and drought conditions when inoculated individually or in combinations in pot experiments with 2 factorial random complete block design. The interactions of the endophytic bacteria and plant host determined the differential gene expression in response to drought as revealed by quantitative polymerase chain reaction. Single inoculum of the endophytic bacteria increased the height, weight, root traits, and harvest index of Jerusalem artichoke compared to co-inocula under both well-watered and drought conditions. However, the co-inocula of Rossellomorea aquimaris strain 3.13 and Bacillus velezensis strain 5.18 proved to be a synergistic combination leading to high inulin accumulation; while the co-inocula of B. velezensis strain 5.18 and Micrococcus luteus strain 4.43 were not beneficial when used in combination. The genes, dehydrin like protein and ethylene responsive element binding factor, were upregulated in the plants inoculated with single inoculum and co-inocula of all endophytic bacteria during drought stress. Moreover, the gene expression of indole-3-acetic acid (IAA) amido synthetase were up-regulated in Jerusalem artichoke inoculated with M. luteus strain 4.43 during drought stress. The fructan:fructan 1-fructosyltransferase (1-FFT) was also stimulated by the endophytic bacteria particularly in drought condition; the results of this study could explain the relationship between endophytic bacteria and plant host for growth and yield promotion under well-watered and drought conditions.


Assuntos
Helianthus , Inulina , Regulação para Cima , Genes de Plantas , Secas , Frutanos/metabolismo , Bactérias/genética , Plantas/genética
15.
Genes (Basel) ; 14(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372470

RESUMO

As the main reserve carbohydrate in garlic, fructan contributes to garlic's yield and quality formation. Numerous studies have shown that plant fructan metabolism induces a stress response to adverse environments. However, the transcriptional regulation mechanism of garlic fructan in low-temperature environments is still unknown. In this study, the fructan metabolism of garlic seedlings under low-temperature stress was revealed by transcriptome and metabolome approaches. With the extension of stress time, the number of differentially expressed genes and metabolites increased. Using weighted gene co-expression network analysis (WGCNA), three key enzyme genes related to fructan metabolism were screened (a total of 12 transcripts): sucrose: sucrose 1-fructosyltransferase (1-SST) gene; fructan: fructan 6G fructosyltransferase (6G-FFT) gene; and fructan 1-exohydrolase (1-FEH) gene. Finally, two hub genes were obtained, namely Cluster-4573.161559 (6G-FFT) and Cluster-4573.153574 (1-FEH). The correlation network and metabolic heat map analysis between fructan genes and carbohydrate metabolites indicate that the expression of key enzyme genes in fructan metabolism plays a positive promoting role in the fructan response to low temperatures in garlic. The number of genes associated with the key enzyme of fructan metabolism in trehalose 6-phosphate was the highest, and the accumulation of trehalose 6-phosphate content may mainly depend on the key enzyme genes of fructan metabolism rather than the enzyme genes in its own synthesis pathway. This study not only obtained the key genes of fructan metabolism in garlic seedlings responding to low temperatures but also preliminarily analyzed its regulatory mechanism, providing an important theoretical basis for further elucidating the cold resistance mechanism of garlic fructan metabolism.


Assuntos
Alho , Metabolômica , Frutanos/metabolismo , Alho/metabolismo , Temperatura , Transcriptoma , Redes Reguladoras de Genes
16.
Int J Biol Macromol ; 242(Pt 1): 124734, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150366

RESUMO

The Inulinase from Kluyveromyces marxianus ISO3 (Inu-ISO3) is an enzyme able to hydrolyze linear fructans such as chicory inulin as well as branched fructans like agavin. This enzyme was cloned and expressed in Komagataella pastoris to study the role of selected aromatic and polar residues in the catalytic pocket by Alanine scanning. Molecular dynamics (MD) simulations and enzyme kinetics analysis were performed to study the functional consequences of these amino acid substitutions. Site-directed mutagenesis was used to construct the mutants of the enzyme after carrying out the MD simulations between Inu-ISO3 and its substrates. Mutation Trp79:Ala resulted in the total loss of activity when fructans were used as substrates, while with sucrose, the activity decreased by 98 %. In contrast, the mutations Phe113:Ala and Gln236:Ala increased the invertase activity when sucrose was used as a substrate. Although these amino acids are not part of the conserved motifs where the catalytic triad is located, they are essential for the enzyme's activity. In silico and experimental approaches corroborate the relevance of these residues for substrate binding and their influence on enzymatic activity.


Assuntos
Kluyveromyces , Simulação de Dinâmica Molecular , Glicosídeo Hidrolases/química , Kluyveromyces/genética , Frutanos/metabolismo , Aminoácidos/metabolismo , Sacarose/metabolismo
17.
ACS Synth Biol ; 12(4): 1297-1307, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37036829

RESUMO

Molasses with abundant sugars is widely used for bioethanol production. Although the ethanologenic bacterium Zymomonas mobilis can use glucose, fructose, and sucrose for ethanol production, levan production from sucrose reduces the ethanol yield of molasses fermentation. To increase ethanol production from sucrose-rich molasses, Z. mobilis was adapted in molasses, sucrose, and fructose in parallel. Adaptation in fructose is the most effective route to generate an evolved strain F74 with improved molasses utilization, which is majorly due to a G99S mutation in Glf for enhanced fructose import. Subsequent sacB deletion and sacC overexpression in F74 to divert sucrose metabolism from levan production to ethanol production further enhanced ethanol productivity 28.6% to 1.35 g/L/h. The efficient utilization of molasses by diverting sucrose metabolic flux through adaptation and genome engineering not only generated an excellent ethanol producer using molasses but also provided the strategy for developing microbial cell factories.


Assuntos
Engenharia Metabólica , Zymomonas , Zymomonas/genética , Melaço , Sacarose/metabolismo , Frutose/metabolismo , Etanol/metabolismo , Frutanos/metabolismo , Fermentação
18.
Int J Biol Macromol ; 240: 124418, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080400

RESUMO

Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the ß-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.


Assuntos
Cosmecêuticos , Cosméticos , Halomonas , Humanos , Cosmecêuticos/farmacologia , Cosmecêuticos/metabolismo , Halomonas/metabolismo , Pele , Cosméticos/farmacologia , Cosméticos/metabolismo , Frutanos/farmacologia , Frutanos/metabolismo
19.
Int J Biol Macromol ; 229: 181-187, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36587635

RESUMO

Human epidermal growth factor (hEGF) has been a subject of extensive research as its wide range of physiological functions has many potential applications. However, due to the low stability of hEGF, its physiological effect is easily lost under conditions of use. To compensate for this, we developed a stable delivery system using levan-based nanoparticles. The entrapment yield of various tested proteins was significantly improved by employing carboxymethyl levan (CML) instead of levan; the entrapment yield of the CML-hEGF nanoparticles was 84.1 %. The size and zeta potential of the nanoparticles were identified as 199.9 ± 3.87 nm and -19.1 mV, respectively, using scanning electron microscopy (SEM) and particle size analysis. Dual biological functions of the nanoparticles (skin regeneration and moisturizing) were identified through collagen synthesis activity and aquaporin 3 expression level analysis. Stability of the prepared nanoparticles was also investigated via cell proliferation activity comparison under mimicked physiological conditions. The CML-hEGF nanoparticles maintained cell proliferation activity over 100 % for 6 weeks, while free hEGF was almost inactivated within 2 weeks. Taken together, our results indicate that the CML-based hEGF nanoparticles can be used in pharma- and cosmeceutical applications, guaranteeing a high entrapment capability, functionality, and stability.


Assuntos
Cosmecêuticos , Humanos , Cosmecêuticos/metabolismo , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Pele/metabolismo , Frutanos/metabolismo
20.
Microb Cell Fact ; 22(1): 18, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703199

RESUMO

BACKGROUND: Although Levan-type fructooligosaccharides (L-FOS) have been shown to exhibit prebiotic properties, no efficient methods for their large-scale production have been proposed. One alternative relies on the simultaneous levan synthesis from sucrose, followed by endolevanase hydrolysis. For this purpose, several options have been described, particularly through the synthesis of the corresponding enzymes in recombinant Escherichia coli. Major drawbacks still consist in the requirement of GRAS microorganisms for enzyme production, but mainly, the elimination of glucose and fructose, the reaction by-products. RESULTS: The expression of a fusion enzyme between Bacillus licheniformis endolevanase (LevB1) and B. subtilis levansucrase (SacB) in Pichia pastoris cultures, coupled with the simultaneous synthesis of L-FOS from sucrose and the elimination of the residual monosaccharides, in a single one-pot process was developed. The proof of concept at 250 mL flask-level, resulted in 8.62 g of monosaccharide-free L-FOS and 12.83 gDCW of biomass, after 3 successive sucrose additions (30 g in total), that is a 28.7% yield (w L-FOS/w sucrose) over a period of 288 h. At a 1.5 L bioreactor-level, growth considerably increased and, after 59 h and two sucrose additions, 72.9 g of monosaccharide-free L-FOS and 22.77 gDCW of biomass were obtained from a total of 160 g of sucrose fed, corresponding to a 45.5% yield (w L-FOS/w sucrose), 1.6 higher than the flask system. The L-FOS obtained at flask-level had a DP lower than 20 fructose units, while at bioreactor-level smaller oligosaccharides were obtained, with a DP lower than 10, as a consequence of the lower endolevanase activity in the flask-level. CONCLUSION: We demonstrate here in a novel system, that P. pastoris cultures can simultaneously be used as comprehensive system to produce the enzyme and the enzymatic L-FOS synthesis with growth sustained by sucrose by-products. This system may be now the center of an optimization strategy for an efficient production of glucose and fructose free L-FOS, to make them available for their application as prebiotics. Besides, P. pastoris biomass also constitutes an interesting source of unicellular protein.


Assuntos
Oligossacarídeos , Açúcares , Oligossacarídeos/metabolismo , Glucose , Monossacarídeos , Sacarose/metabolismo , Frutose/metabolismo , Frutanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...